International Renewable Energy Academy

Perspectives from Vote Solar

June, 2017

Vote Solar

- » Non-profit U.S. based advocacy organization working to make solar a mainstream energy resource
- » Work focused at state legislatures and at utility regulatory commissions
- » Formed in 2002, with team members located in California, Colorado, Georgian, Massachusetts, Maryland, Illinois and Washington DC
- » www.votesolar.org

Key Issues for Vote Solar

- » Protecting consumers right to self supply electricity from solar
- » Promoting rate design and compensation mechanisms that support customer economics for solar
- » Advancing solar integration on the grid to minimize curtailment and reduce greenhouse gases
- » Modernizing the grid to assure growth in distributed energy resources to provide local and system value

Recent Successes

- » Settlement agreement in Colorado requires Xcel Energy to expand consumer access to solar, particularly among low-income communities
- » Recent multi-party settlement agreement with Arizona Public Service that assures growth in behind-the-meter solar in greater Phoenix area
- » New York extended net metering for residential customers in the first phase of its Value of DER proceeding and opened up new opportunities for community solar projects based on a value stack that includes social cost of carbon adder.
- » Georgia Power IRP will result in the installation 1,050 MW of renewable resources by 2021.
- » Property tax exemption for solar adopted through ballot measure in Florida
- » Community solar bill passed by Nevada legislature to increase access to affordable solar
- » California Senate passed Renewable Energy for All bill that will create access to solar for low-income consumers

Principles for Solar Rate Design

- » Rate design should encourage sustainable, cost-effective investments in solar and complementary technologies
- » Rate design that emphasize temporal cost-causation are usually consistent with solar deployment
- » Rate designs that emphasize high fixed charges generally do not reflect cost causation and disproportionately impact low and moderate income customers
- » Value of solar compensation should take into account both short term and long term (life of system) benefits
- » Buy all/sell all compensation should be at the option of the retail seller
- » Compensation methods should take into account the efficacy of integrating solar with other forms of distributed energy resources (storage)

Solar Trends

- » Installed solar capacity doubled in 2016 (14,762 MW)
- » 40% of new generating capacity in 2016 was solar
- » 22 states adding more than 100 MW of solar in 2016
- » Installed solar capacity expected to triple by 2022
- » Rapid growth in solar-by-wire for commercial customers
- » Amount of solar currently installed in U.S. 42.4 GW

Top Solar Markets in U.S.

State	2016 Additions (MWp)	Cumulative Solar (MWp)	Utility Scale GWH in 2016	DG PV GWH in 2016	% of State Production
California	5,096	17,084	16,610	8,402	12.1%
Utah	1,241	1,489	874	150	2.6%
Georgia	1,023	1,432	907	169	0.8%
Nevada	984	2,017	2,302	372	6.4%
N. Carolina	923	3,016	3,854	161	3.0%
Texas	672	1,215	751	357	0.2%
Arizona	657	2,700	3,109	1,655	4.3%
Mass.	406	1,487	707	1,242	5.9%
Florida	404	606	273	249	0.2%
Colorado Sources: GTM Resea	382 arch - 2016 Year in Review; Fe	926 bruary 2017 EIA Monthly Ele	548 ectricity Report	471	1.9%

The Future of Solar Integration

- » More complex retail pricing that better differentiates the location and time-based values associated with buying, selling and storing energy
- » Greater use of customer resources motors, pumps, water heaters, air conditioners, electric vehicles to balance the system
- » Retirement of inflexible generation and better use of the existing fleet of power plants, including renewables to provide ancillary services
- » Balancing area consolidation for wholesale power markets to increase diversity of resources
- » Coordination of transmission and distribution operations in high distributed resource grid.